

DECLARATION ENVIRONNEMENTALE ET SANITAIRE CONFORME A LA NORME NF P 01-010

Magnacryl Prestige Velours

Version: Octobre 2013

Cette déclaration est présentée selon le modèle de Fiche de Déclaration Environnementale et Sanitaire validé par l'AIMCC (FDE&S Version 2005)

PLAN

INTRODUCTION GUIDE DE LECTURE	4	3
1 CARACTERISATION DU PRODUIT SELON NF P 01-010 § 4.3 1.1 Définition de l'Unité Fonctionnelle (UF)	5	5
 1.2 Masses et données de base pour le calcul de l'unité fonctionnelle (UF) 1.3 Caractéristiques techniques utiles non contenues dans la définition de l'unité fonctionnelle 	5 5	
2 DONNEES D'INVENTAIRE ET AUTRES DONNEES SELON NF P 01-010 § 5 ET COMMENTAIRES RELATIFS AUX EFFETS ENVIRONNEMENTAUX ET SANITAIRES DU PRODUIT SELON NF P 01-010 § 4.7.2 2.1 Consommations des ressources naturelles (NF P 01-010 § 5.1) 2.2 Emissions dans l'air, l'eau et le sol (NF P 01-010 § 5.2) 2.3 Production de déchets (NF P 01-010 § 5.3)	6 6 10 16	
3 IMPACTS ENVIRONNEMENTAUX REPRESENTATIFS DES PRODUITS DE CONSELON NF P 01-010 \S 6	NSTRU 18	CTION
4 CONTRIBUTION DU PRODUIT A L'EVALUATION DES RISQUES SANITAIRES ET DE LA QUALITE DE VIE A L'INTERIEUR DES BATIMENTS		
SELON NF P 01-010 § 7	19	
 4.1 Informations utiles à l'évaluation des risques sanitaires (NF P 01-010 § 7.2) 18 4.2 Contribution du produit à la qualité de vie à l'intérieur des bâtiments 	19	
(NF P 01-010 § 7.3)	19	
5 AUTRES CONTRIBUTIONS DU PRODUIT NOTAMMENT PAR RAPPORT A DES PREOCCUPATIONS D'ECOGESTION DU BATIMENT, D'ECONOMIE ET DE		
POLITIQUE ENVIRONNEMENTALE GLOBALE 5.1 Ecogestion du bâtiment	21	21
5.2 Préoccupation économique 5.3 Politique environnementale globale	21 21	21
6 ANNEXE : CARACTERISATION DES DONNEES POUR LE CALCUL DE		
L'INVENTAIRE DE CYCLE DE VIE (ICV) 6.1 Définition du système d'ACV (Analyse de Cycle de Vie)	22 22	
6.2 Sources de données	23	
6.3 Traçabilité	23	

INTRODUCTION

Le cadre utilisé pour la présentation de la déclaration environnementale et sanitaire est la Fiche de Déclaration Environnementale et Sanitaire élaborée par l'AIMCC (FDE&S version 2005).

Cette fiche constitue un cadre adapté à la présentation des caractéristiques environnementales et sanitaires des produits de construction conformément aux exigences de la norme NF P 01-010 et à la fourniture de commentaires et d'informations complémentaires utiles dans le respect de l'esprit de cette norme en matière de sincérité et de transparence (NF P 01-010 § 4.2).

Un rapport d'accompagnement de la déclaration a été établi, il peut être consulté, sous accord de confidentialité.

Producteur des données (NF P 01-010 § 4).

Les informations contenues dans cette déclaration sont fournies sous la responsabilité de AkzoNobel Decorative Paints selon la norme *NF P 01-010 § 4.6*.

Contact:

Dina FAGE (dina.fage@akzonobel.com)

Bertrand BEGHIN (bertrand.beghin@akzonobel.com)

Site de production : Manchelen, Belgium

GUIDE DE LECTURE

L'affichage des données d'inventaire respecte les exigences de la norme NF P01-010. Les cases vides ne représentent pas des valeurs nulles mais des valeurs non significatives. Seules les cases contenant un zéro indiquent un flux nul. Dans les tableaux suivants 2,53E-06 doit être lu : 2,53x10⁻⁶ (écriture scientifique), soit 0,00000253.

Les unités utilisées sont précisées devant chaque flux, elles sont :

- le kilogramme « kg »,
- le gramme « g »,
- le litre « I »,
- le kilowattheure « kWh »,
- le mégajoule « MJ ».

Abréviations:

ACV : Analyse du Cycle de VieDVT : Durée de Vie Typique

- UF : Unité Fonctionnelle

1 Caractérisation du produit selon NF P 01-010 § 4.3

1.1 Définition de l'Unité Fonctionnelle (UF)

« Protéger et décorer 1 m² de support, préparé dans les règles de l'art selon DTU 59.1, avec de la peinture de finition pendant 1 annuité et sur la base d'une durée de vie typique de 10 ans. »

1.2 Masses et données de base pour le calcul de l'unité fonctionnelle (UF)

Quantité de produit, d'emballage de distribution et de produits complémentaires contenue dans l'UF sur la base d'une Durée de Vie Typique (DVT) de 10 ans.

Produit: Magnacryl Prestige Velours, peinture murale à usage intérieur.

Pour décorer 1 m² de support il faut deux couches de 136 grammes, soit 272 g/m² de produit appliqué. L'entretien n'est pas nécessaire pendant la Durée de Vie Typique considérée.

Emballages de Distribution (nature et quantité):

Emballage polypropylène:

0,00E+00 kg par UF (0,00E+00 kg pour l'ensemble de la DVT)

2,34E-03 kg par UF (2,34E-02 kg pour l'ensemble de la DVT)

Emballage carton:

3,88E-05 kg par UF (3,88E-04 kg pour l'ensemble de la DVT)

7,00E+00 kg par UF (0,00E+00 kg pour l'ensemble de la DVT)

8,00E+00 kg par UF (0,00E+00 kg pour l'ensemble de la DVT)

9,00E+00 kg par UF (0,00E+00 kg pour l'ensemble de la DVT)

<u>Produits complémentaires (nature et quantité) pour la mise en oeuvre</u>: Les outils de mise en œuvre ont été pris en compte (une brosse et un manchon par 300 m² peinte)

<u>Taux de pertes lors de la mise en œuvre et l'entretien</u>: un taux de perte de 2% correspondant aux fonds de bidons, au produit resté dans le matériel d'application et aux pertes d'application a été pris en compte.

<u>Justification des informations fournies:</u> Les données décrites ci-dessous ont été fournies par AkzoNobel Decorative Paints.

1.3 Caractéristiques techniques utiles non contenues dans la définition de l'unité fonctionnelle

Se référer à la Fiche Technique TRIMETAL.

2 Données d'Inventaire et autres données selon NF P 01-010 §5 et commentaires relatifs aux effets environnementaux et sanitaires du produit selon NF P 01-010 §4.7.2

Les données d'inventaire de cycle de vie qui sont présentées ci-après ont été calculées pour l'unité fonctionnelle définie en 1.1 et 1.2.

Un guide de lecture des tableaux est disponible page 4.

2.1 Consommations des ressources naturelles (NF P 01-010 § 5.1)

2.1.1 Consommation de ressources naturelles énergétiques et indicateurs énergétiques (NF P 01-010 § 5.1.1)

	Unités	Production	Transport	Mise	Vie	Fin de Vie	Total cycle	de vie
			-	en Oeuvre	en Oeuvre			
Flux							Par annuité	Pour toute la DVT
Consomm	nation	de ressou	irces nati	urelles én	ergétique	S		
Bois	kg	0,000411	5,46E-010	2,12E-005	0	1,4E-010	0,000432	0,00432
Charbon	kg	0,00481	2,37E-006	0,000111	0	6,08E-007	0,00493	0,0493
Gaz Naturel	kg	0,0148	2,4E-005	0,000329	0	6,16E-006	0,0152	0,152
Lignite	kg	0,00359	5,66E-006	7,36E-005	0	1,45E-006	0,00367	0,0367
Pétrole	kg	0,0106	0,000469	0,00026	0	0,00012	0,0114	0,114
Uranium	kg	1,91E-007	1,76E-010	4,07E-009	0	4,5E-011	1,96E-007	1,96E-006
Indicateur	rs éner	gétiques						
Energie primarire totale	MJ	1,42	0,0213	0,033	0	0,00547	1,48	14,8
Energie renouvelable	MJ	0,0312	2,32E-005	0,000971	0	5,94E-006	0,0322	0,322
Energie non renouvelable	MJ	1,39	0,0213	0,032	0	0,00546	1,45	14,5
Energie procédé	MJ	1,17	0,0213	0,0279	0	0,00547	1,22	12,2
Energie matière	MJ	0,256	0	0,00512	-	0	0,261	2,61
Electricité	kWh	0,00297	0	5,94E-005	0	0	0,00303	0,0303

Commentaires relatifs à la consommation de ressources naturelles énergétiques et aux indicateurs énergétiques:

Les indicateurs énergétiques doivent être utilisés avec précaution car ils additionnent des énergies d'origine différente.

Les sommes d'énergie totale peut ne pas correspondre aux totaux indiqués.

La production représente plus de 95% de l'énergie primaire totale.

2.1.2 Consommation de ressources naturelles non énergétiques (NF P 01-010 § 5.1.2)

	Unités	Production	Transport	Mise	Vie	Fin	Total cycle	de vie
					en Oeuvre	de Vie		
Flux							Par annuité	Pour toute la DVT
Antimoine (Sb)	kg	6,92E-014	0	0	0	0	7,06E-014	7,06E-013
Argent (Ag)	kg	2,75E-009	0	5,5E-011	0	0	2,8E-009	2,8E-008
Argile	kg	0,000638	1,95E-007	1,28E-005	0	5E-008	0,000651	0,00651
Arsenic (As)	kg	0	0	0	0	0	0	0
Bauxite (Al2O3)	kg	8,25E-007	1,02E-009	1,93E-008	0	2,61E-010	8,46E-007	8,46E-006
Bentonite	kg	1,02E-005	6,96E-007	2,35E-007	0	1,78E-007	1,14E-005	0,000114
Bismuth (Bi)	kg	0	0	0	0	0	0	0
Bore (B)	kg	0	0	0	0	0	0	0
Cadmium (Cd)	kg	3,08E-009	0	6,27E-011	0	0	3,14E-009	3,14E-008
Calcaire	kg	0,0065	1,5E-006	0,000136	0	3,83E-007	0,00664	0,0664
Carbonate de Sodium (Na2Co3)	kg	0	0	0	0	0	0	0
Chlorure de Potasium (KCI)	kg	1,56E-006	2,73E-013	4,93E-008	0	7,01E-014	1,61E-006	1,61E-005
Chlorure de Sodium (NaCl)	kg	0,00251	6,43E-010	5,11E-005	0	1,65E-010	0,00256	0,0256
Chrome (Cr)	kg	8,31E-006	6,4E-012	1,34E-006	0	1,64E-012	9,66E-006	9,66E-005
Cobalt (Co)	kg	2,49E-011	0	5,38E-013	0	0	2,55E-011	2,55E-010
Cuivre (Cu)	kg	1,42E-005	7,86E-010	2,84E-007	0	2,01E-010	1,45E-005	0,000145
Dolomie	kg	2,41E-006	1,8E-012	4,86E-008	0	4,62E-013	2,46E-006	2,46E-005
Etain (Sn)	kg	2,58E-005	7,11E-025	5,16E-007	0	1,82E-025	2,63E-005	0,000263
Feldspath	kg	5,28E-009	0	1,06E-010	0	0	5,38E-009	5,38E-008
Fer (Fe)	kg	0,00373	2,92E-007	7,47E-005	0	7,48E-008	0,00381	0,0381
Fluorite (CaF2)	kg	4,35E-005	1,9E-012	8,7E-007	0	4,88E-013	4,44E-005	0,000444
Gravier	kg	8,19E-006	0	1,65E-007	0	0	8,36E-006	8,36E-005
Lithium (Li)	kg	0	0	0	0	0	0	0
Kaolin (Al2O3, 2SiO2, 2H2O)	kg	0,000393	2,42E-011	7,85E-006	0	6,2E-012	0,0004	0,004
Magnésium (Mg)	kg	1,24E-007	1,69E-008	8,69E-009	0	4,35E-009	1,54E-007	1,54E-006
Manganèse (Mn)	kg	1,06E-006	2,4E-009	2,9E-007	0	6,15E-010	1,35E-006	1,35E-005
Mercure (Hg)	kg	5,2E-009	0	1,04E-010	0	0	5,3E-009	5,3E-008
Molybdène (Mo)	kg	1,26E-006	7,74E-017	2,56E-008	0	1,98E-017	1,29E-006	1,29E-005
Nickel (Ni)	kg	2,46E-005	3E-010	8,86E-007	0	7,68E-011	2,55E-005	0,000255
Or (Au)	kg	8,67E-010	0	1,73E-011	0	0	8,84E-010	8,84E-009
Palladium (Pd)	kg	6,96E-011	0	1,4E-012	0	0	7,1E-011	7,1E-010
Platine (Pt)	kg	3,12E-012	0	6,28E-014	0	0	3,18E-012	3,18E-011
Plomb (Pb)	kg	9,43E-006		1,89E-007	0	1,67E-009	9,63E-006	9,63E-005
Rhodium (Rh)	kg	1,1E-012	0	2,23E-014	0	0	1,13E-012	1,13E-011
Dioxyde de titane (TiO2) dans le rutile et l'illemnite	kg	0,00636	3,54E-011	0,000127	0	9,08E-012	0,00648	0,0648
Sable	kg	1,05E-005	0	2,17E-007	0	0	1,07E-005	0,000107
Silice(SiO2)	kg	0,000104	2,4E-007	3,63E-006	0	6,16E-008	0,000108	0,00108
Soufre (S)	kg	0,000156	6,34E-014	3,12E-006	0	1,63E-014	0,000159	0,00159
Sulfate de Baryum (BaSO4)	kg	0,000145	1,68E-006	2,97E-006	0	4,31E-007	0,00015	0,0015
Titane (Ti)	kg	0	0	0	0	0	0	0

Tungstène (W)	kg	0	0	0	0	0	0	0
Vanadium (V)	kg	0	0	0	0	0	0	0
Zinc (Zn)	kg	8,65E-006	2,88E-009	1,74E-007	0	7,39E-010	8,83E-006	8,83E-005
Zirconium (Zr)	kg	1,16E-009	0	2,31E-011	0	0	1,18E-009	1,18E-008
Matières premières végétales non spécifiées avant	kg	0	0	0	0	0	0	0
Matières premières animales non spécifiées avant	kg	0	0	0	0	0	0	0
Produits intermédiaires non remontés (total)	kg	0	0	0	0	0	0	0

Commentaires relatifs à la consommation de ressources naturelles non énergétiques :

Les consommations principales de ressources naturelles non énergétique sont : le chlorure de sodium (NaCl), le calcaire (Ca), le fer et le dioxyde de titane (TiO₂).

2.1.3 Consommation d'eau (prélèvements) (NF P 01-010 § 5.1.3)

Un guide de lecture des tableaux est disponible page 4.

	Unités	Production	Transport		Vie	Fin de	Total cycle	de vie
				en Oeuvre	en Oeuvre	Vie		
Flux							Par annuité	Pour toute la DVT
Eau: Lac	litre	0,00174	0	3,48E-005	0	0	0,00177	0,0177
Eau: Mer	litre	0,0318	1,38E-005	0,000796	0	3,54E-00 6	0,0326	0,326
Eau: Nappe Phréatique	litre	0,0303	3,35E-005	0,000831	0	8,59E-00 6	0,0312	0,312
Eau: Origine non Spécificée	litre	2,15	0,000343	0,0459	0	8,78E-00 5	2,19	21,9
Eau: Rivière	litre	0,151	0	0,00283	0	0	0,153	1,53
Eau Potable (réseau)	litre	0,00064	0	1,3E-005	0	0	0,000653	0,00653
Eau Consommée (total)	litre	2,36	0,00039	0,0504	0	0,0001	2,41	24,1

Commentaires relatifs à la consommation d'eau (prélèvements) :

La consommation d'eau principale se déroule pendant la production des matières premières. Ces données viennent de la base de données Ecoinvent et sont d'origine non spécifiée.

2.1.4 Consommation d'énergie et de matière récupérées (NF P 01-010 § 5.1.4)

	Unités	Production	Transport	Mise en Oeuvre	_	Fin de Vie	Total cycle	de vie
Flux							Par annuité	Pour toute la DVT

Energie Récupérée	MJ	2,13E-007	0	4,26E-009	0	0	2,17E-007	2,17E-006
Matière Récupérée: Total	kg	0,000288	0	5,75E-006	0	0	0,000293	0,00293
Matière Récupérée: Acier	kg	0,000286	0	5,71E-006	0	0	0,000291	0,00291
Matière Récupérée: Aluminium	kg	0	0	0	0	0	0	0
Matière Récupérée: Métal (non spécifié)	kg	1,8E-006	0	3,6E-008	0	0	1,84E-006	1,84E-005
Matière Récupérée: Papier-Carton	kg	0	0	0	0	0	0	0
Matière Récupérée: Plastique	kg	0	0	0	0	0	0	0
Matière Récupérée: Calcin	kg	0	0	0	0	0	0	0
Matière Récupérée: Biomasse	kg	1,23E-013	0	8,51E-015	0	0	1,31E-013	1,31E-012
Matière Récupérée Minérale	kg	0	0	0	0	0	0	0
Matière Récupérée: Non spécifiée	kg	0	0	0	0	0	0	0

Commentaires relatifs à la consommation d'énergie et de matière récupérées :

Les flux de matières récupérées ci-dessus viennent principalement du tri et de la récupération des emballages en usine à l'origine des données de Plastics Europe.

2.2 Emissions dans l'air, l'eau et le sol (NF P 01-010 § 5.2)

2.2.1 Emissions dans l'air (NF P 01-010 § 5.2.1)

	Unités	Production	Transport	Mise	Vie	Fin de Vie	Total cycle	de vie
				en Oeuvre	en Oeuvre			
Flux							Par annuité	Pour toute la DVT
Hydrocarbures (non spécifiés)	g	0,00882	2,54E-007	0,7	0	6,52E-008	0,709	7,09
Hydrocarbures (non spécifiés, excepté méthane)	g	0,0255	0,000568	0,000593	0	0,000146	0,0268	0,268

HAP ^a (non spécifiés)	g	1,09E-005	9E-007	5,25E-007	0	2,31E-007	1,26E-005	0,000126
Méthane (CH ₄)	g	0,304	0,0016	0,00677	0	0,147	0,459	4,59
Composés organiques volatils (par exemple, acétone, acétate, etc.)	g	0,025	0,000293	0,000527	0	7,52E-005	0,0259	0,259
Dioxyde de Carbone (CO ₂)	g	67,3	1,41	1,53	0	0,764	71	710
Monoxyde de Carbone (CO)	g	0,131	0,00256	0,00321	0	0,000655	0,137	1,37
Oxydes d'Azote (NOx en NO ₂)	g	0,16	0,0117	0,00388	0	0,00299	0,178	1,78
Protoxyde d'Azote (N ₂ O)	g	0,00182	1,27E-005	3,76E-005	0	3,26E-006	0,00187	0,0187
Ammoniaque (NH ₃)	g	0,00131	8,84E-006	2,67E-005	0	2,27E-006	0,00135	0,0135
Poussières (non spécifiées)	g	0,0986	0,000286	0,00207	0	7,33E-005	0,101	1,01
Oxydes de Soufre (SOx en SO ₂)	g	0,277	0,000742	0,00605	0	0,00019	0,284	2,84
Hydrogène Sulfureux (H₂S)	g	0,000344	2,74E-006	7,05E-006	0	7,01E-007	0,000354	0,00354
Acide Cyanhydrique (HCN)	g	5E-005	1,01E-011	1E-006	0	2,58E-012	5,1E-005	0,00051
Acide phosphorique (H3PO4)	g	0	0	0	0	0	0	0
Composés chlorés organiques (en Cl)	g	5,2E-005	4,38E-009	1,04E-006	0	1,12E-009	5,3E-005	0,00053
Acide Chlorhydrique (HCl)	g	0,00243	1,3E-006	5,4E-005	0	3,34E-007	0,00248	0,0248
Composés chlorés inorganiques (en CI)	g	0,00256	1,76E-006	5,65E-005	0	4,5E-007	0,00262	0,0262
Composés chlorés non spécifiés (en CI)	g	0	0	0	0	0	0	0
Composés fluorés organiques (en F)	g	3,52E-006	9,68E-010	7,19E-008	0	2,48E-010	3,59E-006	3,59E-005

Composés fluorés inorganiques (en F)	g	0,000224	3,64E-007	4,9E-006	0	9,35E-008	0,000224	0,00229
Composés halogénés (non spécifiés)	g	8,48E-016	7,61E-016	4,56E-017	0	1,95E-016	1,85E-015	1,85E-014
Composés fluorés non spécifiés (en F)	g	0	0	0	0	0	0	0
Métaux (non spécifiés)	g	0,000119	5,11E-008	2,39E-006	0	1,31E-008	0,000122	0,00122
Antimoine et ses composés (en Sb	g	5,85E-007	1,46E-010	1,2E-008	0	3,73E-011	5,97E-007	5,97E-006
Arsenic et ses composés (en As)	g	4,94E-006	2,18E-009	1,02E-007	0	5,58E-010	5,05E-006	5,05E-005
Cadmium et ses composés (en Cd)	g	2,23E-006	7,25E-010	4,51E-008	0	1,86E-010	2,28E-006	2,28E-005
Chrome et ses composés (en Cr)	g	3,46E-005	5,63E-009	8,54E-007	0	1,44E-009	3,55E-005	0,000355
Cobalt et ses composés (en Co)	g	1,73E-006	7,26E-009	4,49E-008	0	1,86E-009	1,78E-006	1,78E-006
Cuivre et ses composés (en Cu)	g	3,08E-005	5,62E-009	6,4E-007	0	1,44E-009	3,15E-005	0,000315
Etain et ses composés (en Sn)	g	7,43E-007	1,88E-009	1,76E-008	0	4,83E-010	7,63E-007	7,63E-006
Manganèse et ses composés (en Mn)	g	7,95E-006	2,04E-009	1,82E-007	0	5,24E-010	8,14E-006	8,14E-005
Mercure et ses composés (en Hg)	g	3,13E-006	8,27E-010	6,49E-008	0	2,12E-010	3,2E-006	3,2E-005
Nickel et ses composés (en Ni)	g	4,48E-005	5,42E-008	1,29E-006	0	1,39E-008	4,62E-005	0,000462
Plomb et ses composés (en Pb)	g	2,8E-005	1,35E-008	5,71E-007	0	3,45E-009	2,86E-005	0,000286
Sélénium et ses composés (en Se)	g	1,84E-006	5,76E-009	4,14E-008	0	1,48E-009	1,89E-006	1,89E-005
Tellure et ses composés (en Te)	g	3,24E-012	2,63E-012	2,36E-013	0	6,75E-013	6,78E-012	6,78E-011
Zinc et ses composés (en Zn)	g	0,000332	1,58E-008	6,66E-006	0	4,05E-009	0,000338	0,00338
Vanadium et ses composés (en V)	g	5,88E-005	5,13E-007	1,22E-006	0	1,31E-007	6,07E-005	0,000607

Silicium et ses	α.	1,83E-007	0	3,66E-009	0	0	1,86E-007	1,86E-006
composés (en Si)	y							

^a HAP: Hydrocarbures Aromatiques Polycycliques

NOTE : Concernant les émissions radioactives, ce tableau devra être complété dès que la transposition de la directive européenne Euratom sur les émissions radioactives sera publiée.

Commentaires relatifs aux émissions dans l'air :

La principale émission dans l'air est le CO₂ (environ 97% sur la base de masse).

2.2.2 Emissions dans l'eau (NF P 01-010 § 5.2.2)

	Unités	Production	Transport	Mise en Oeuvre	Vie en Oeuvre	Fin de Vie	Total cycle	de vie
Flux					on court	40 110	Par annuité	Pour toute la DVT
DCO (Demande Chimique en Oxygène)	g	0,477	5,06E-005	0,0129	0	0,00223	0,492	4,92
DBO5 (Demande Biochimique en Oxygène à 5 jours)	g	0,195	2,61E-009	0,00398	0	6,7E-007	0,199	1,99
Matière en Suspension (MES)	g	0,0317	2,2E-007	0,000643	0	5,64E-008	0,0324	0,324
Cyanure (CN-)	g	5,22E-005	2,45E-009	1,06E-006	0	6,28E-010	5,33E-005	0,000533
AOX (Halogènes des composés organiques adsorbables)	g	0,0777	4,88E-007	0,00155	0	1,25E-007	0,0793	0,793
Hydrocarbures (non spécifiés)	g	0,0281	1,5E-005	0,000576	0	3,85E-006	0,0287	0,287
Composés azotés (en N)	g	0,0091	4,26E-006	0,000184	0	1,09E-006	0,00929	0,0929
Composés phosphorés (en P)	g	0,00182	2,77E-007	3,67E-005	0	7,09E-008	0,00186	0,0186
Composés fluorés organiques (en F)	g	0	0	0	0	0	0	0
Composés fluorés inorganiques (en F)	g	0,000667	4,17E-006	1,91E-005	0	1,07E-006	0,000691	0,00691

Composés fluorés non spécifiés (en F)	g	0	0	0	0	0	0	0
Composés chlorés organiques (en Cl)	g	6,18E-006	3,71E-011	1,25E-007	0	9,51E-012	6,31E-006	6,31E-005
Composés chlorés inorganiques (en Cl)	g	0,433	0,0179	0,0107	0	0,00459	0,467	4,67
Composés chlorés non spécifiés (en Cl)	g	0	0	0	0	0	0	0
HAP (non spécifiés)	g	1,57E-006	2,62E-009	3,64E-008	0	6,72E-010	1,61E-006	1,61E-005
Métaux (non spécifiés)	g	0,0184	1,32E-005	0,000398	0	3,38E-006	0,0188	0,188
Aluminium et ses composés (en Al)	g	0,00465	1,17E-007	9,31E-005	0	3E-008	0,00474	0,0474
Arsenic et ses composés (en As)	g	3,2E-005	1,62E-007	6,46E-007	0	4,15E-011	3,28E-005	0,000328
Cadmium et ses composés (en Cd)	g	8,29E-007	7,53E-008	1,98E-008	0	1,93E-008	9,44E-007	9,44E-006
Chrome et ses composés (en Cr)	g	8,05E-005	2,32E-007	1,68E-005	0	5,96E-008	9,76E-005	0,000976
Cuivre et ses composés (en Cu)	g	2,68E-005	2,61E-007	5,5E-007	0	6,68E-008	2,77E-005	2,77E-005
Etain et ses composés (en Sn)	g	2,2E-005	2,3E-013	4,4E-007	0	5,89E-014	2,24E-005	0,000224
Fer et ses composés (en Fe)	g	0,0133	1,06E-005	0,00028	0	2,71E-006	0,0136	0,136
Mercure et ses composés (en Hg)	g	3,83E-007	1,33E-009	7,82E-009	0	3,4E-010	3,92E-007	3,92E-006
Nickel et ses composés (en Ni)	g	4,48E-005	5,42E-008	1,29E-006	0	1,39E-008	4,62E-005	0,000462
Plomb et ses composés (en Pb)	g	3,13E-005	5,9E-008	6,35E-007	0	1,51E-008	3,2E-005	0,00032
Zinc et ses composés (en Zn)	g	0,000193	1,59E-006	4,04E-006	0	4,07E-007	0,000199	0,00199
Eau rejetée	Litre	3,53E-005	0,000295	7,33E-007	0	7,58E-005	3,61E-005	0,000361

<u>Commentaires sur les émissions dans l'eau:</u> Les émissions dans l'eau sont principalement liées à la production.

2.2.3 Emissions dans le sol (NF P 01-010 § 5.2.3)

Un guide de lecture des tableaux est disponible page 4.

	Unités	Production	Transport		Vie en Oeuvre	Fin de Vie	Total cycle	de vie
Flux							Par annuité	Pour toute la DVT
Arsenic et ses composés (en As)	g	6,45E-008	0	0	0	7,92E-012	6,59E-008	6,59E-007
Biocides ^a	g	2,63E-005	0	5,31E-007	0	0	2,68E-005	0,000268
Cadmium et ses composés (en Cd)	g	1,52E-008	2,8E-010	3,34E-010	0	7,17E-011	1,59E-008	1,59E-007
Chrome et ses composés (en Cr)	g	4,96E-006	7,74E-008	1,03E-007	0	1,99E-008	5,16E-006	5,16E-005
Cuivre et ses composés(en Cu)	g	1,66E-006	7,94E-010	3,7E-008	0	2,04E-010	1,7E-006	1,7E-005
Etain et ses composés (en Sn)	g	1,3E-008	0	2,59E-010	0	0	1,32E-008	1,32E-007
Fer et ses composés (en Fe)	g	0,00148	1,13E-007	2,97E-005	0	2,9E-008	0,00151	0,0151
Plomb et ses composés (en Pb)	g	1,83E-007	2,08E-011	3,8E-009	0	5,34E-012	1,87E-007	1,87E-006
Mercure et ses composés (en Hg)	g	1,1E-009	1,57E-012	2,29E-011	0	4,03E-013	1,12E-009	1,12E-008
Nickel et ses composés (en Ni)	g	1,45E-007	2,23E-008	2,7E-008	0	5,72E-009	2E-007	2E-006
Zinc et ses composés (en Zn)	g	6,76E-006	8,61E-009	1,4E-007	0	2,21E-009	6,91E-006	6,91E-005
Métaux lourds (non spécifiés)	g	0,00153	2,54E-005	3,15E-005	0	6,5E-006	0,00159	0,0159

^a Biocides : par exemple, pesticides, herbicides, fongicides, insecticides, bactéricides, etc.

Commentaires sur les émissions dans le sol:

Les émissions dans le sol proviennent principalement de la phase de production des matières premières.

2.3 Production de déchets (NF P 01-010 § 5.3)

2.3.1 Déchets valorisés (NF P 01-010 § 5.3)

Un guide de lecture des tableaux est disponible page 4.

	Unités	Production	Transport	Mise en Oeuvre	Vie en Oeuvre	Fin de Vie	Total cycle	de vie
Flux				on courte	on courte		Par annuité	Pour toute la DVT
Energie Récupérée	MJ	0	0	0	0	0	0	0
Matière Récupérée : Total	kg	0,00112	0	3,21E-005	0	0	0,00115	0,0115
Matière Récupérée : Acier	kg	0	0	0	0	0	0	0
Matière Récupérée : Aluminium	kg	4,17E-007	0	8,34E-009	0	0	4,26E-007	4,26E-006
Matière Récupérée : Métal (non spécifié)	kg	0	0	0	0	0	0	0
Matière Récupérée : Papier-Carton	kg	2,56E-012	0	3,55E-010	0	0	3,58E-010	3,58E-009
Matière Récupérée : Plastique	kg	4,34E-007	0	3,04E-008	0	0	4,65E-007	4,65E-006
Matière Récupérée : Calcin	kg	0	0	0	0	0	0	0
Matière Récupérée : Biomasse	kg	8,17E-009	0	6,14E-009	0	0	1,43E-008	1,43E-007
Matière Récupérée : Minérale	kg	0	0	0	0	0	0	0
Matière Récupérée : Non spécifiée	kg	0	0	0	0	0	0	0

2.3.2 Déchets éliminés (NF P 01-010 § 5.3)

Un guide de lecture des tableaux est disponible page 4.

	Unités	Production	Transport	Mise en Oeuvre	Vie en Oeuvre	Fin de Vie	Total cycle	de vie
Flux							Par annuité	Pour toute la DVT
Déchets dangereux	kg	5E-005	0	0,00297	0	0	0,00302	0,0302
Déchets non dangereux	kg	0,000441	0	1,07E-005	0	0,027	0,0274	0,274
Déchets inertes	kg	0,00332	0,000105	0,000182	0	2,69E-005	0,00364	0,0364
Déchets radioactifs	kg	6,53E-007	3,34E-008	5,89E-008	0	8,57E-009	7,54E-007	7,54E-006

Commentaires relatifs à la production et aux modalités de gestion des déchets:

AkzoNobel

Les flux ci-dessus sont ceux qui s'étendent au delà du périmètre du système étudié. Le scénario de fin de vie du produit a été la mise en décharge (cf. NF P 01-010). La mise en décharge est inclue dans le perimètre, et le produit qui restant est comptabilisé comme déchets non dangereux. Le scénario de fin de vie des emballage et les outils de mise en œuvre est comme déchets dangereux.

3 Impacts environnementaux représentatifs des produits de construction selon (NF P 01-010 § 6)

Tous ces impacts sont renseignés ou calculés conformément aux indications du § 6.1 de la norme NF P01-010, à partir des données du § 2 et pour l'unité fonctionnelle de référence par annuité définie au § 1.1 et 1.2 de la présente déclaration, ainsi que pour l'unité fonctionnelle rapportée à toute la DVT (Durée de Vie Typique).

Nr	Impact environnemental	Valeur de l'indicateur pour l'unité fonctionnelle	Valeur de l´indicateur pour toute la DVT	
1	Consommation de ressources			
	énergétiques			
	Energie primaire totale	1,48 MJ/UF	14,8 MJ	
	Energie renouvelable	0,0322 MJ/UF	0,322 MJ	
	Energie non renouvelable	1,45 MJ/UF	14,5 MJ	
2	Epuisement de ressources (ADP)	2,51E-007 kg antimoine	2,51E-006 kg antimoine	
		Equiv.(Sb)/UF	Equiv.(Sb)	
3	Consommation d'eau totale	2,41 litre/UF	24,1 litre	
4	Déchets solides			
	Déchets valorisés (total)	0,00115 kg/UF	0,0115 kg	
	Déchets éliminés :	_	_	
	Déchets dangereux	0,00302 kg/UF	0,0302 kg	
	Déchets non dangereux	0,0274 kg/UF	0,274 kg	
	Déchets inertes	0,00364 kg/UF	0,0364 kg	
	Déchets radioactifs	7,54E-007 kg/UF	7,54E-006 kg	
5	Changement climatique*	0,0877 kg CO ₂ Equiv/UF	0,877 kg CO ₂ Equiv	
6	Acidification atmosphérique	0,000435 kg SO ₂ Equiv/UF	0,00435 kg SO ₂ Equiv	
7	Pollution de l'air	3,26 m ^{3/} UF	32,6 m3	
8	Pollution de l'eau	0,463 m ^{3/} UF	4,63 m3	
9	Destruction de la couche d'ozone stratosphérique	7,32E-009 kg CFC Equiv R11/UF	7,32E-008 kg CFC Equiv R11	
10	Formation d'ozone photochimique	0,000235 kg Ethene Equiv/UF		
11	Eutrophisation	6,50E-005 kg équiv PO ₄ 3-/UF	6,50E-004 kg équiv PO ₄ 3-	

inclut 0,011 kg CO₂ équivalent de dioxyde de carbone absorbé pour toute la DVT ainsi que les émissions correspondantes de dioxyde de carbone biogénique.

4 Contribution du produit à l'évaluation des risques sanitaires et de la qualité de vie à l'intérieur des bâtiments selon NF P 01-010 §7

Contribution du produit		Paragraphe concerné	Expression (Valeurs de mesures, calculs)
A l'évaluation des risques sanitaires	Qualité sanitaire des espaces intérieurs	§ 4.1.1	Aucun essai disponible
	Qualité sanitaire de l'eau	§ 4.1.2	Aucun essai disponible
A la qualité de la vie	Confort hygrothermique	§ 4.2.1	Aucune performance thermique revendiquée
	Confort acoustique	§ 4.2.2	Aucune performance acoustique revendiquée
	Confort visuel	§ 4.2.3	Aucun essai réalisé
	Confort olfactif	§ 4.2.4	Aucun essai réalisé

4.1 Informations utiles à l'évaluation des risques sanitaires (NF P 01-010 § 7.2)

4.1.1 Contribution à la qualité sanitaire des espaces intérieurs (NF P 01-010 § 7.2.1)

Aucun essai concernant la qualité sanitaire des espaces intérieurs en terme d'émission n'est disponible à ce jour.

4.1.2 Contribution à la qualité sanitaire de l'eau (NF P 01-010 § 7.2.2)

Aucun essai concernant la qualité sanitaire de l'eau en contact avec le produit durant sa vie en œuvre est disponible.

4.2 Contribution du produit à la qualité de vie à l'intérieur des bâtiments (NF P 01-010 § 7.3)

4.2.1 Caractéristiques du produit participant à la création des conditions de confort hygrothermique dans le bâtiment (NF P 01-010 § 7.3.1)

Ce produit ne revendique aucune performance thermique.

4.2.2 Caractéristiques du produit participant à la création des conditions de confort acoustique dans le bâtiment (NF P 01-010 § 7.3.2)

Ce produit ne revendique aucune performance acoustique.

4.2.3 Caractéristiques du produit participant à la création des conditions de confort visuel dans le bâtiment (NF P 01-010 § 7.3.3)

Magnacryl Prestige Velours contribue au confort visuel des murs intérieurs, aucun essai n'a toutefois été réalisé dans ce domaine.

4.2.4 Caractéristiques du produit participant à la création des conditions de confort olfactif dans le bâtiment (NF P 01-010 § 7.3.4)

Aucun essai réalisé.

5 Autres contributions du produit notamment par rapport à des préoccupations d'écogestion du bâtiment, d'économie et de politique environnementale globale

5.1 Ecogestion du bâtiment

5.1.1 Gestion de l'énergie

Non concerné.

5.1.2 Gestion de l'eau

Non concerné.

5.1.3 Entretien et maintenance

Comme spécifié dans la description de l'unité fonctionnelle, le produit considéré dans cette FDES n'est pas sujet à entretien pendant la DVT considérée (10 ans).

5.2 Préoccupation économique

Le département recherche et développement d'AkzoNobel sélectionne des matières premières de haute qualité, non dangereuses, performantes et aux coûts optimisés. Le produit formulé apporte ainsi une réponse en terme de durabilité et représente une solution aux préoccupations économiques.

5.3 Politique environnementale globale

5.3.1 Ressources naturelles

Les ressources naturelles consommées sont décrites dans les tableaux de la partie environnementale de la FDES.

5.3.2 Emissions dans l'air et dans l'eau

Les émissions dans l'air et l'eau sont décrites dans les tableaux de la partie environnementale de la FDES.

5.3.3 Déchets

La production de déchets est décrite dans les tableaux de la partie environnementale de la FDES.

6 Annexe : Caractérisation des données pour le calcul de l'Inventaire de Cycle de Vie (ICV)

Cette annexe est issue du rapport d'accompagnement de la déclaration (cf. Introduction)

6.1 Définition du système d'ACV (Analyse de Cycle de Vie)

Description des flux pris en compte dans le cycle de vie du produit

6.1.1 Etapes et flux inclus

Production:

- Production des matières premières constituant la peinture
- Production des emballages des matières premières et des emballages du produit fini
- Transport des matières premières et des emballages jusqu'au site de fabrication AkzoNobel (production et combustion du diesel)
- Production de la peinture

Transport:

 Transport de la peinture jusqu'au lieu de mise en oeuvre (production et combustion du diesel)

Mise en oeuvre:

- Application de la peinture, incluant la quantité de produit perdue pendant la mise en oeuvre (taux de perte: 2%).
- Emissions de COV lors de l'application.
- Les outils de mise en œuvre (brosse et manchon)

Vie en oeuvre:

- Sans objet (pas de renouvelleement)

Fin de vie:

- Transport des déchets jusqu'au centre de traitement ou d'élimination (production et combustion du diesel)
- Fin de vie du produit par mise en décharge (scénario).

6.1.2 Flux omis

La norme NF P 01-010 permet d'omettre du système les flux suivants:

- l'éclairage, le chauffage et le nettoyage des ateliers.
- le département administratif,
- le transport des employés,
- la fabrication de l'outil de production et des systèmes de transport (machines, camions, etc..)

Les consommations d'énergie d'éclairage et de chauffage des sites de production ont été incluses dans le système (car difficilement dissociables), mais sont à priori négligeables devant les consommations d'énergie liées au processus de fabrication.

6.1.3 Règle de délimitation des frontières

La norme NF P 01-010 a fixé le seuil de coupure à 98% selon le paragraphe 4.5.1 de la norme.

Dans le cadre de cette déclaration, le pourcentage des flux remontés est 100%.

6.2 Sources de données

6.2.1 Caractérisation des données principales

Fabrication:

- Année: 2011

Représentatitivité géographique: EuropeReprésentativité technologique: Europe

- Source: AkzoNobel/EcoInvent/PlasticEurope/PE/ETH

Transport:

- Année: 2011

Représentatitivité géographique: FranceReprésentativité technologique: Europe

- Source: AkzoNobel/PE/NTM

Mise en œuvre:

- Année: 2011

- Zone géographique: France

- Source: AkzoNobel

Fin de vie:

- Année: 2011

- Zone géographique: France

- Source: AkzoNobel

6.2.2 Données énergétiques

Les données utilisées concernant l'énergie sont principalement issues de la base de données Ecoinvent v. 1.3 ou 2.2, qui ont été mise en jour en 2006 et 2010. Ce ne sont pas les données proposées dans le fascicule AFNOR FD P 01-015, qui elles sont principalement basées sur des sources datant de 1996.

Modèle électrique: mix de la production en France pendant l'année 2007 (l'Agence Internationale d'Energie, IEA).

6.2.3 Données non-ICV

Les données non-ICV sont établies par AkzoNobel.

6.3 Traçabilité

Le modèle d'ICV a été réalisé par AkzoNobel à l'aide du logiciel d'ACV GaBi 4.

Rapport d'accompagnement: Bondesson H, Jelse K and Ljungkvist H 2013. LCA Methodology Report for FDES of seven TRIMETAL products. Draft Version 2013 v1.0.

AKZO NOBEL COATINGS - Département TRIMETAL Z.I. Les Bas Prés - B.P. 70113 - 60761 MONTATAIRE Cedex Tél. 03 44 64 92 61 - Fax 03 44 64 92 70 Internet: http://www.trimetal.com